NASA SBIR/STTR Technologies

Proposal No.: A04.01-7626

Description and Objectives

Development of integrated CFD, 6-DoF and blast wave simulation tool for RLV crew escape system design and analysis.

- Builds on proven military crew escape systems simulation program applicable across flight regime (reactive flow solver, Chimera grids, 6-DoF).
- Develop and integrate blast wave physics model to simulate launch vehicle explosion impact.
- Provide cross-cutting technology, applicable to all RLV architectures and for all crew escape systems, ejection seats to crew vehicles.
- Phase I: Integrate blast wave models simulating launch vehicle explosion into pre-existing simulation suite. Demonstrate application of technology for high speed ejection and CTV abort, including blast wave effects
- Phase II: Refine models and improve simulation speed/accuracy through solution adaptive algorithms. Demonstrate and validate for 2nd Gen RLV.

Ejection Seat and Capsule Crew Escape System Simulations

Approach

- Pre-existing robust, reliable flow solver for hypersonic thermo-chemical 3-D flow simulation
- Overset Chimera grid approach with tightly coupled 6-DoF and prescribed motion models for multi-body dynamics
- Develop and integrate simplified blast wave physics models derived from analytical models and SLI Cycle I explosion test data
- Simulate crew escape system functionality for ejection seats and crew vehicles over flight regime
- Assess functionality of escape system under explosion effects and probability of successful escape.

Subcontractors/Partners

None

Schedule and Deliverables

TASK DESCRIPTION	Months After Receipt of Contract					
	1	2	3	4	5	6
Task 1. Assess Extension of Crew Escape Technology to Space Vehicles						
Task 2. Demonstrate Crew Escape Simulation over Flight Regime						
Task 3. Develop Blast Wave Model		l I				
Task 4. Demonstrate Blast Wave Effect Simulation						
Task 5. Identify and Plan Modeling Improvements						
Task 6. Prepare Final Report						

Deliverable

Mature staging and crew escape system simulation tool applicable across flight envelope.

NASA & Commercial Applications

- Direct and immediate applications in 2nd Gen and 3rd Gen RLV crew escape,
- Enables NASA and SLI contractors in crew escape concept definition, evaluation and verification of designs not possible with ground/flight tests,
- Store release and crew escape from hypersonic military aircraft systems,
- · Missile proximity warhead effectiveness